Tangle sums and factorization of A-polynomials

نویسندگان

  • Masaharu Ishikawa
  • Thomas W. Mattman
  • Koya Shimokawa
  • MASAHARU ISHIKAWA
  • THOMAS W. MATTMAN
  • KOYA SHIMOKAWA
چکیده

We show that there exist infinitely many examples of pairs of knots, K1 and K2, that have no epimorphism π1(S 3 \K1)→ π1(S \K2) preserving peripheral structure although their A-polynomials have the factorization AK2(L,M) | AK1(L,M). Our construction accounts for most of the known factorizations of this form for knots with 10 or fewer crossings. In particular, we conclude that while an epimorphism will lead to a factorization of A-polynomials, the converse generally fails.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deterministically Factoring Sparse Polynomials into Multilinear Factors and Sums of Univariate Polynomials

We present the first efficient deterministic algorithm for factoring sparse polynomials that split into multilinear factors and sums of univariate polynomials. Our result makes partial progress towards the resolution of the classical question posed by von zur Gathen and Kaltofen in [6] to devise an efficient deterministic algorithm for factoring (general) sparse polynomials. We achieve our goal...

متن کامل

Direct Sum Decomposability of Polynomials and Factorization of Associated Forms

For a homogeneous polynomial with a non-zero discriminant, we interpret direct sum decomposability of the polynomial in terms of factorization properties of the Macaulay inverse system of its Milnor algebra. This leads to an if-and-only-if criterion for direct sum decomposability of such a polynomial, and to an algorithm for computing direct sum decompositions over any field, either of characte...

متن کامل

Factorization of non-negative operator valued trigonometric polynomials in two variables

Schur complements provide a convenient tool for proving the operator valued version of the classical (single variable) Fejér-Riesz problem. It also enables the factorization of multivariable trigonometric polynomials which are strictly positive. A result of Scheiderer implies that in two variables, nonnegative scalar valued trigonometric polynomials have sums of squares decompositions, Using a ...

متن کامل

Fast Computation of Gauss Sums and Resolution of the Root of Unity Ambiguity

We present an algorithm for computing Gauss sums over Fq for large prime powers q. This allows us to find the exact values of Gauss sums in many previously intractable cases. The efficient computation of such Gauss sums up to multiplication with a root of unity is achieved by using Stickelberger’s factorization of Gauss sums, an application of the Fincke-Pohst algorithm, and fast arithmetic for...

متن کامل

Factoring Polynomials over Special Finite Fields

We exhibit a deterministic algorithm for factoring polynomials in one variable over "nite "elds. It is e$cient only if a positive integer k is known for which ' k (p) is built up from small prime factors; here ' k denotes the kth cyclotomic polynomial, and p is the characteristic of the "eld. In the case k"1, when ' k (p)"p!1, such an algorithm was known, and its analysis required the generaliz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015